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Effects of stratification on quasi-geostrophic
inviscid equilibria

By W I L L I A M J. M E R R Y F I E L D
Institute of Ocean Sciences, Sidney, B.C., Canada

(Received 24 September 1996 and in revised form 5 September 1997)

Inviscid equilibrium mean flows over topography are considered for continuously
stratified quasi-geostrophic models, in contrast to previous work which has dealt with
two-layer models. From the constraint of maximum entropy, an equation for the
equilibrium mean flow is derived. Analytical solutions are obtained for uniform and
piecewise-constant stratifications. With increasing stratification, the mean streamfunc-
tion becomes increasingly bottom intensified. Bottom trapping becomes ever more
pronounced on smaller scales, but can remain significant even on the largest scales.
When boundary temperature is uniform, transport is shown to be independent of
stratification, other factors being equal. Although two-layer models share this prop-
erty, they represent poorly the energetics of the continuous system when bottom
trapping is significant.

1. Introduction
The inviscid equilibria of quasi-geostrophic flows can be characterized analytically

using methods of statistical mechanics. Interest in such equilibria has heightened
recently because of their relevance to certain eddy parameterizations for coarse-
resolution ocean circulation models. The premise underlying these parameterizations
is that eddies tend to restore toward inviscid equilibrium flows which are acted upon by
forcing and dissipation. This equilibration tendency is represented by prescribing that
unresolved eddies drive flows up entropy gradients, i.e. maximize entropy production
(Holloway 1992; Kazantsev, Sommeria & Verron 1997).

To date, these parameterizations have considered barotropic equilibria only, and
omitted effects of stratification. This is principally due to ignorance about the nature
of stratified equilibria. Clearly, it is desirable to include such effects, as stratification is
an important influence on ocean circulation. Except for two-layer models, expressions
for stratified inviscid equilibria have not previously been available. The objective of
this paper is to provide expressions for such flows, and to describe their properties.

Inviscid equilibria of two-layer models are reviewed in §2. In §3 an equation de-
scribing equilibrium mean flows in continuously stratified models is derived, and
analytical solutions are obtained. The relationship between the two-layer and contin-
uously stratified results is discussed in §4, and conclusions are presented in §5.

2. Inviscid equilibria of two-layer models
The dynamics of quasi-geostrophic layer models are described by

∂qi

∂t
+ J(qi, ψi) = 0, i = 1, . . . ,M, (2.1)
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where M is the number of layers, qi and ψi are the potential vorticity and stream-
function in layer i, and J(A,B) = ∂(A,B)/∂(x, y) is the Jacobian operator with
respect to Cartesian coordinates (x, y). Salmon, Holloway & Hendershott (1976)
(henceforth SHH) considered inviscid equilibria for models having M = 1, for which
q = ∇2ψ + βy + h, and M = 2, for which

q1 = ∇2ψ1 + βy + F1(ψ2 − ψ1), (2.2a)

q2 = ∇2ψ2 + βy − F2(ψ2 − ψ1) + h (2.2b)

where f = f0 + βy is Coriolis parameter, ∇ is the horizontal gradient operator,
Fi = f2

0/g
′Hi, where Hi is mean thickness of layer i and g′ is reduced gravity, and

h = f0(H −H0)/HM , where H is total depth and H0 is mean total depth. This paper
concentrates on effects of topography and neglects latitudinal variations in f.

Equations (1) conserve total energy

E =
1

2

∫ ∫ [ M∑
i=1

Hi

H0

|∇ψi|2 +

M−1∑
i=1

f2
0

g′iH0

(ψi+1 − ψi)2

]
dx dy, (2.3)

together with arbitrary moments of q for each layer. The theory of SHH accounts
for conservation of E and the potential enstrophies

Qi =
1

2

∫ ∫
q2
i dx dy, (2.4)

and is applicable when topography and initial conditions are random (Merryfield &
Holloway 1996).† For one-layer models, the equilibrium flow has a steady component
which obeys µψ̄ = q̄, where the overbars denote ensemble averages, and µ ≡ α/β
is the ratio of two Lagrange multipliers, whose values depend on E, Q and h. For
doubly periodic domains, considered here for simplicity, the Fourier transform of
this relation yields ψ̄k = hk/(µ + k2), where k is wave vector and k = |k|. Mean
flows thus are correlated with topography in the sense of anticyclonic circulation over
topographic elevations.

The expressions derived by SHH for mean flows in two-layer models are rewritten
here in simplified form. The mean streamfunctions are

ψ̄1,k =
F1hk

Λ
, ψ̄2,k =

(k2 + F1 + µ1)hk
Λ

, (2.5a)

where

Λ ≡ k2(k2 + F1 + F2) + µ1(k
2 + F2) + µ2(k

2 + F1) + µ1µ2, (2.5b)

and µi ≡ α/βi. The Lagrange multipliers α and βi depend on E, Qi, Fi and h, as
described in Appendix A.

These solutions have several notable properties. Using (2.2) it is straightforward to
show that the Fourier transforms of (2.5a,b) are equivalent to

µiψ̄i = q̄i. (2.6)

As for M = 1, mean streamfunction is correlated with topography, the single-layer
solution being recovered as H1 → 0 (F1 → ∞). As g′ increases, the Fi decrease, and

† A theory that accounts for higher-order invariants has been developed by Miller (1990) and
Robert & Sommeria (1991).
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the mean flow becomes increasingly trapped in the bottom layer for wavenumbers
k >
∼ (F1 + µ1)

−1/2. This implies enhanced trapping on scales less than (H0/H2)
1/2 times

the Rossby deformation radius LD = [g′H1H2/f
2
0H0]

1/2 for µ1
<
∼ F1, and on scales

less than µ
−1/2
1 for µ1

>
∼ F1. If µ1 = µ2 ≡ µ, the mean transport streamfunction

Ψ̄ =
∑

i Hiψ̄i is independent of g′, and equal to its barotropic value H0ψ̄. Finally,
ψ̄ remains partially bottom trapped even on the largest scales (k → 0) for finite
stratification g′ > 0, with ratio F1/(F1 + µ1) of upper to lower mean flow. For given
µ1, this effect becomes increasingly pronounced with increasing g′.

3. Inviscid equilibria of continuously stratified models
The two-layer models described in §2 are extremely simple representations of

stratified quasi-geostrophic flow. Models allowing continuous dependence on depth z
would be more realistic. The results quoted in §2 suggest patterns of behaviour for
such systems, such as enhanced bottom trapping of mean flows on horizontal scales
smaller than LD . However, a more accurate and general description can be achieved
by considering the continuously stratified case explicitly.

The continuously stratified problem is approached here by obtaining an equation for
inviscid equilibrium ψ̄ from the maximum-entropy constraint. Illustrative analytical
solutions are then found for uniform and piecewise-constant stratification.

The maximum-entropy mean flows are obtained by the procedure illustrated in
Salmon (1982) and in the Appendix of Holloway (1992). In the limit of continuous
depth variation, the governing equation (2.1) becomes

∂q

∂t
+ J(ψ, q) = 0, (3.1)

with q(x, y, z) and ψ(x, y, z) related by

q = ∇2ψ +
∂

∂z

[
f2

0

N2(z)

∂ψ

∂z

]
, (3.2)

where N is Brunt–Väisälä frequency and z is depth. Equation (3.2) assumes nearly
uniform density, as in the oceans, and constant Coriolis parameter f0 (e.g. Pedlosky
1987, §6.8). The top and bottom boundary conditions are that velocities normal to
the boundaries vanish. This implies w = 0 at the upper boundary and w = u · ∇(H)
at the lower boundary, for horizontal velocity u = (−∂yψ, ∂xψ) and vertical velocity

w =

(
∂

∂t
+ u · ∇

)[
− f0

N2(z)

dψ

dz

]
. (3.3)

The expression in square brackets represents vertical displacement of isotherms (con-
stant temperature surfaces). For simplicity, it is assumed in this section that such
surfaces are tangent to the boundaries. This represents the continuously stratified
(M → ∞) limit of the layer models of §2. The more general case in which isotherms
may intersect the boundaries is considered in Appendix B.

With temperature uniform on the boundaries, the quadratic invariants are energy,

E =
1

2

∫ ∫ ∫ {
|∇ψ|2 +

f2
0

N2(z)

(
∂ψ

∂z

)2
}

dx dy dz, (3.4)
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and potential enstrophy at each depth,

dQ(z) = 1
2

dz

∫ ∫
q2 dx dy. (3.5)

The objective is to find ψ(z) which maximizes entropy S = −
∫

dY p log p, subject
to constraints imposed by the constant E and dQ(z), and by normalization of total
probability to unity. Here, Y is state vector (a list of the dependent variables), and p is
probability. The state of maximum S can be specified by requiring that the variation
of S with respect to probability vanish. Introducing Lagrange multipliers α, β(z) and
η, whose values are determined by the constraints, leads to

δ

∫
dY

[
p log p+ αEp+

∫ H0

0

β(z)dQ(z)p+ ηp

]
= 0, (3.6)

which is satisfied for

log p+ αE +

∫ H0

0

β(z)dQ(z) + η = 0, (3.7)

or

p = exp(−1− η) exp

{
−
∫ H0

0

dz

[
α

dE

dz
+ β(z)

dQ

dz

]}
. (3.8)

The Fourier modes for the ensemble-mean streamfunction can now be found from

ψ̄k(z) =

∫ ∞
−∞
ψk(z)p[ψk(z)]dψk(z), (3.9)

where p is given by (3.8), with

dE

dz
=

1

H0

∑
k

{
k2|ψk|2 +

f2
0

N2(z)

∣∣∣∣dψkdz

∣∣∣∣2
}
, (3.10)

dQ

dz
=

1

H0

∑
k

∣∣∣∣−k2ψk +
d

dz

[
f2

0

N2(z)

dψk
dz

]∣∣∣∣2 . (3.11)

Straightforward evaluation of (3.9) leads to

ψ̄k(z) =

β(z)
d

dz

[
f2

0

N2(z)

dψ̄k
dz

]
α+ β(z)k2

, (3.12)

or
d

dz

[
f2

0

N2(z)

dψ̄k
dz

]
−
[
k2 + µ(z)

]
ψ̄k(z) = 0, (3.13)

where µ(z) ≡ α/β(z). From the Fourier transform of (3.2), this is equivalent to
µ(z)ψ̄(z) = q̄(z). From (3.3), the conditions of vanishing normal velocity and uniform
temperature at the top and bottom boundaries imply

dψ̄k
dz

= 0 at z = 0, (3.14)

and
dψ̄k
dz

=
N2

f2
0

H0hk at z = H0. (3.15)
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Before considering analytical solutions to (3.13)–(3.15)†, two properties of ψ̄k are
deduced from these equations. The first is that |ψ̄k| increases uniformly with depth,
provided µ > 0. This can be shown by integrating (3.13) with respect to depth, which
yields

f2
0

N2(z)

dψ̄k
dz

=

∫ z

0

[
k2 + µ(z′)

]
ψ̄k(z

′)dz′. (3.16)

Because dψ̄k/dz = 0 at z = 0, ψ̄k and dψ̄k/dz at infinitesimal depth must have the
same sign. An extension of this argument to finite depths indicates that |ψ̄k| cannot
change sign, and monotonically increases downward. The lower boundary condition
(3.15) fixes the sign of ψ̄k to that of hk.

The second property is that for given uniform µ(z) = µ, Ψ̄k is independent of
stratification N(z), and equal to the barotropic transport streamfunction, as for the
two-layer model considered in §2. This can be shown by integrating (3.12) over depth:

Ψ̄ k =

∫ H0

0

ψ̄k(z)dz

=
1

µ+ k2

∫ H0

0

d

dz

[
f2

0

N(z)

dψ̄k
dz

]
dz

=
hk

µ+ k2
H0, (3.17)

where boundary conditions (3.14)–(3.15) have been employed in evaluating the inte-
gral.

3.1. Constant N

When N and µ are uniform, (3.13) has constant coefficients and is particularly easy
to solve. The general solution is then ψ̄k = aeKz + be−Kz , with

K ≡ N

f0

(k2 + µ)1/2 =
LD

H0

(k2 + µ)1/2, (3.18)

where LD = H0N/f0 is Rossby radius for uniform N. Substituting this form into the
boundary conditions determines a and b, yielding

ψ̄k(z) =
hk

µ+ k2
KH0

coshKz

sinhKH0

. (3.19)

For given µ and hk, this defines a family of solutions in the dimensionless quantity
KH0, which measures the importance of stratification.

For weak stratification (KH0 � 1), ψ̄k approaches the one-layer barotropic solution,
with ψ̄k independent of z:

ψ̄k →
hk

µ+ k2
as N → 0. (3.20)

† Solutions to the inverse Fourier transform of (3.13)–(3.15) are analogous to steady solutions of
the three-dimensional heat equation with a decay term,

∂T

∂t
=
∂2T

∂2x
+
∂2T

∂2y
+

∂

∂z

[
κ(z)

∂T

∂z

]
− µ(z)T = 0

with an insulating top boundary and prescribed flux of heat at the lower boundary.



350 W. J. Merryfield

0

1

2

3

4

5
0 500 1000 1500 2000

D
ep

th
, z

 (
km

) (a)

wk(z) (106 m2 s–1)

0

1

2

3

4

5
0 200 400 600 1000

(b)

wk(z) (106 m2 s–1)
800

Figure 1. Equilibrium mean streamfunction ψ̄k(z), normalized to unit hk , for H0 = 5 km and
f0 = 10−4 s−1. (a) N = 0.4× 10−3 s−1, 0.8× 10−3 s−1, and 1.6× 10−3 s−1, for µ−1/2 = 20 km (solid)
and 5 km (dashed). Surface-to-bottom variation increases with increasing N. The largest horizontal
scales (k → 0) are considered. (b) Horizontal scales 2πk−1 = 1000 km, 100 km, and 10 km, for
µ−1/2 = 20 km (solid) and 5 km (dashed), and N = 0.8 × 10−3 s−1. Amplitudes increase with
increasing horizontal scale.

For strong stratification (KH0 � 1),

ψ̄k →
hk

µ+ k2
KH0e

−K(H0−z) as N →∞, (3.21)

so that the topographic influence on ψ̄k decays exponentially from the bottom with
scale height K−1. Figure 1 shows solutions for two choices of µ and different values
of k and N.

The kinetic and available potential energies of the mean flow can be determined by
substituting (3.19) into (3.10) and integrating over z. Kinetic energy, corresponding
to the first term in (3.10), is

EK =
∑
k

|hk|2
(µ+ k2)2

H0K

4
k2

(
sinh 2KH0 + 2KH0

sinh 2KH0

)
, (3.22)

whereas available potential energy is

EP =
∑
k

|hk|2
(µ+ k2)2

H0K

4
(k2 + µ)

(
sinh 2KH0 − 2KH0

sinh 2KH0

)
. (3.23)

In the limit of weak stratification, the ratio of available potential to kinetic energy at
wave vector k is (

EP

EK

)
k

→ 1

3

(k2 + µ)2

k2
L2
D (N → 0), (3.24)

which approaches infinity for horizontal scales much larger than µ−1/2, and L2
D/3 for

horizontal scales much smaller. For strong stratification,(
EP

EK

)
k

→ (k2 + µ)

k2
(N →∞), (3.25)

which approaches infinity for horizontal scales much larger than µ−1/2, and unity for
horizontal scales much smaller.

3.2. Piecewise-constant N

Suppose now that N has distinct, uniform values over two ranges in depth divided by
depth zi. Equation (3.13) then has constant coefficients in each region and boundary
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Figure 2. Equilibrium mean streamfunction ψ̄k(z), normalized to unit hk , for N = 0 (short-dashed),
uniform N = 0.8 × 10−3 s−1 (solid), and piecewise-constant N = 4.0 × 10−3 s−1 (0 < z < 1 km),
N = 0.8× 10−3 s−1 (z > 1 km) (long-dashed). (a) µ−1/2 = 20 km; (b) µ−1/2 = 5 km.

conditions are (3.14)–(3.15), together with the conditions that ψ̄k and (f2
0/N

2)dψ̄k/dz
be continuous at zi. The derivation and form of the solution are outlined in
Appendix C.

Figure 2 compares solutions having N = 0, constant N, and piecewise-constant
N. Parameter values zi = 1 km, H0 = 5 km and f0 = 10−4 s−1 are approximately
oceanic, and the piecewise-constant N1 = 4 × 10−3 s−1 and N2 = 0.8 × 10−3 s−1

correspond roughly to thermocline and abyssal values. The streamfunction on the
largest scales (k−1 � µ−1/2) is shown. For µ−1/2 = 20 km, the high-N ‘thermocline’
results in stronger attenuation of ψ̄ in the uppermost few hundred metres; below, it
has little influence. For µ−1/2 = 5 km, the simulated thermocline has almost no effect
because ψ̄ is strongly attenuated already at thermocline depths.

4. Relation between two-layer and continuous solutions
This section examines the ability of the two-layer models of §2 to represent the

continuous depth variation of ψ̄k implied by (3.13). (Such comparisons are fairly
standard for quasi-geostrophic models, and are applicable under conditions more
general than the inviscid equilibria considered here.) For simplicity, constant N and
constant µ are again considered.

For both the two-layer and continuous models, the transport streamfunction Ψ̄
is independent of stratification and equal to barotropic Ψ̄ , as noted in §2 and §3.
The vertical discretization implied by the two-layer formulation thus preserves the
first moment of ψ̄k. However, significant differences arise for higher moments, such
as the kinetic and available potential energies. These are given for two-layer models
by Fourier components of the sums in (2.3), with M = 2 and ψ̄k given by (2.5),
and for continuous models by (3.22)–(3.23). The differences are most pronounced in
the strongly stratified limit: g′ → ∞ (Fi → 0) for two-layer models, and N → ∞
(KH0 � 1) for continuous models. In this limit, continuous ψ̄k is trapped within
approximately K−1 of the bottom in accordance with (3.21), whereas two-layer ψ̄k is
uniform within H2 of the bottom, and vanishing above. Kinetic energies are related by(

continuous EK
two-layer EK

)
k

=
KH2

2
, (4.1)

and available potential energies by(
continuous EP
two-layer EP

)
k

=
KH2

2

H2
0

H1H2

µ+ k2

F1

. (4.2)
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Because KH0 � 1 for strong stratification, EK is much larger for continuous models
than for two-layer models if H2 ∼ O(H0). Also, because F1 → 0 in this limit and
H2

0/H1H2 > 4, EP for continuous models is relatively larger still.
For continuous models, the ratio of mean-flow kinetic to available potential energy

at wave vector k, given by (3.25), remains finite in the strongly stratified limit. By
contrast, for two-layer models, (

EP

EK

)
k

=
H1H2

H2
0

F1

k2
, (4.3)

which for fixed k becomes arbitrarily small as stratification g′ (∝ F−1
1 ) increases.

These qualitative differences can be traced to the inability of two-layer models
to resolve the exponential surfaceward decay of ψ̄k when KH0 � 1. For example,
from (4.1) their kinetic energies become comparable only when H2 ≈ K−1, in which
case the scale length for upward decay of ψ̄k is crudely resolved by the two-layer,
piecewise-constant representation. Such a correspondence cannot simultaneously be
achieved for the respective potential energies. This is because the definition of available
potential energy involves a vertical derivative of ψ̄k. The inaccuracy of the two-layer
formulation in representing this derivative attenuates two-layer EP by a factor of
order (µ+ k2)/F1, apparent in (4.2) and (4.3).

5. Discussion and conclusions
The solutions for stratified inviscid equilibria presented here could lead to improve-

ments to an eddy parameterization proposed by Holloway (1992) and implemented in
ocean circulation models (Alvarez et al. 1994; Eby & Holloway 1994; Fyfe & Mari-
none 1995; Holloway, Sou & Eby 1995; Sou, Holloway & Eby 1996; Pal & Holloway
1996). The parameterization represents entropy generation due to unresolved eddies
by a term A∇n(u−u∗) replacing the viscous operator in the equations of motion. Here
A is a coefficient, n = 0 or 2, and u∗ is a maximum-entropy mean flow, which has
been determined from barotropic ψ̄k, given by the Fourier transform of (3.20), with
k → 0. The quantity µ in (3.20) has been interpreted as the inverse square of an eddy
length scale.

Models using the Holloway (1992) parameterization typically have adopted values
for µ−1/2 in the range of 5 to 10 km, whereas typical Rossby radii are around 10
km at subpolar latitudes and 20–40 km at midlatitudes (Emery, Lee & Magaard
1984). On scales coarser than µ−1/2, the dimensionless stratification parameter of
§3.1 is approximately KH0 ≈ LD/µ

−1/2. Thus KH0
>
∼ 1 for parameters representative

of ocean models, suggesting significant bottom intensification of u∗, which could be
taken into account in the Holloway (1992) parameterization.

The eddy parameterization of Kazantsev et al. (1997) is based on an entropy maxi-
mization procedure developed from the Robert & Sommeria (1991) theory of inviscid
equilibria, and reduces to that of Holloway (1992) in the limits of statistical homo-
geneity and small Rossby number. As yet, it has been formulated only for unstratified
quasi-geostrophic models. Based on the results presented here, this parameterization
as well might benefit from accounting for stratification.

The procedure for finding inviscid equilibrium ψ̄k in §3 is incomplete in that µ(z)
is not solved for. A full solution would specify µ(z), together with statistics of the
fluctuating component of flow, as functions of topography h and the invariants E
and Q(z). While this would ultimately be desirable, the present treatment serves to
illustrate some of the basic properties of stratified equilibrium mean flows.
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Appendix A. Determination of Lagrange multipliers for two-layer models
The Lagrange multipliers α and βi, i = 1, 2, are determined by†

E =
∑
k

F

αΛ

[
µ1(k

2 + F2) + µ2(k
2 + F1) + µ1µ2

]
+
|hk|2
Λ2

[
H1

H0

k2F2
1 +

H2

H0

k2(k2 + F1 + F2) + F(k2 + µ1)
2

]
, (A 1)

Q1 =
∑
k

µ1F1

αΛ

[
µ2(k

2 + F1) + k2(k2 + F1 + F2)
]

+
|hk|2
Λ2

µ2
1F

2
1 , (A 2)

Q2 =
∑
k

µ2F2

αΛ

[
µ1(k

2 + F2) + k2(k2 + F1 + F2)
]

+
|hk|2
Λ2

µ2
2(k

2 + F1 + µ1)
2, (A 3)

where F = f2
0/g

′H0, and Λ is given by (2.5b). In each equation, the first grouping
of terms corresponds to fluctuating flow spectra, and the second grouping to mean
flow spectra. Equations (A1)–(A3) can be inverted straightforwardly for α and βi by
iterating from an initial guess via a bisection procedure.

Appendix B. Inviscid equilibria for non-uniform boundary temperature
The results in §3 are generalized here to the case in which isotherms may intersect

the top and bottom boundaries. The more general boundary conditions implied by
(3.3) are

∂Θ0

∂t
+ J(ψ0, Θ0) = 0, (B 1)

∂Θ1

∂t
+ J(ψ1, Θ1) = 0, (B 2)

where ψ0 = ψ(x, y, z=0) and ψ1 = ψ(x, y, z=H0), and

Θ0 = − f2
0

N2(0)

∂ψ

∂z

∣∣∣
z=0
, (B 3)

Θ1 = − f2
0

N2(H0)

∂ψ

∂z

∣∣∣
z=H0

−H0h, (B 4)

are proportional to the temperature anomalies at the boundaries. Equations (B 1)–
(B 2) give rise to an additional pair of quadratic invariants,

Γ0 =

∫ ∫
Θ2

0 dx dy, Γ1 =

∫ ∫
Θ2

1 dx dy, (B 5a, b)

† Here, α and βi are defined slightly differently than in SHH. Denoting the SHH Lagrange
multipliers by αs, βis, α = 2αs and βi = 2βis/Fi.
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so that equation (3.7) for probability density becomes

log p+ αE +

∫ H0

0

β(z)dQ(z) + γ0Γ0 + γ1Γ1 + η = 0, (B 6)

where γ0 and γ1 are the Lagrange multipliers associated with Γ0 and Γ1.
Prior to expressing p as a function of Θ0, Θ1 and ψ, the energy invariant (3.4) is

rewritten using (B 3)–(B 4) and integration by parts as

E =

∫ ∫ {
−ψ1(Θ1 −H0h) + ψ0Θ0 −

∫ H0

0

ψq dz

}
dx dy. (B 7)

Equations (3.5) and (B 3)–(B 7) then lead to

p = exp(−1− η) exp

{
−
∫ ∫

dx dy
[
γ0Θ

2
0 + αψ0Θ0 + γ1Θ

2
1 − αψ1(Θ1 −H0h)

+

∫ H0

0

dz (−αψq + β(z)q2)

]}
. (B 8)

Expressing ψ, Θ0 and Θ1 as Fourier expansions, and using (B 8) to evaluate (3.9) and
analogous expressions for Θ̄0, Θ̄1 yields

d

dz

[
f2

0

N2(z)

dψ̄k
dz

]
−
[
k2 + µ(z)

]
ψ̄k(z) = 0, (B 9)

with µ(z) ≡ α/β(z) as before, and

Θ̄0,k = −ν0ψ0,k, Θ̄1,k = ν1ψ1,k, (B 10a, b)

where ν0 ≡ α/2γ0 and ν1 ≡ α/2γ1. When ν0>0 and ν1>0, topographic bumps give rise
to cold anomalies at the surface, and warm anomalies at the bottom, where isotherms
are hence flatter than topography. Equations (10) translate into boundary conditions

dψ̄k
dz

=
N2

f2
0

ν0ψ̄k at z = 0, (B 11)

and

dψ̄k
dz

=
N2

f2
0

[−ν1ψ̄k +H0hk] at z = H0. (B 12)

As in §3, ψ̄k is non-vanishing only when topography hk is finite. For uniform N and
µ, the solution is

ψ̄k(z) =

K coshKz + ν0

N2

f2
0

sinhKz

K(ν0 + ν1)
N2

f2
0

coshKH0 +

[
K2 + (ν0 + ν1)

(
N2

f2
0

)2
]

sinhKH0

N2

f2
0

H0hk,

(B 13)
with K again given by (3.18).

If ν0 = ν1 = 0, surface temperature anomalies Θ0 and Θ1 vanish, and these
results reduce to the special case of uniform boundary temperature considered in §3.
Similarly, if µ(z) = 0, potential vorticity q vanishes, and the results correspond to the
surface quasi-geostrophic dynamics of Held et al. (1995), generalized to finite depth
with topography.
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Appendix C. Solution of equation (3.13) for piecewise-constant N
Suppose N = N1 for 0 6 z < zi and N = N2 for zi < z < H . In addition to (3.14)–

(3.15), the boundary conditions on (3.13) are continuity of ψ̄k and (f2
0/N

2)dψ̄k/dz at
z = zi. The solution, assuming piecewise-constant µ, is of the form

ψ̄k(z) = a1e
K1z + b1e

−K1z , 0 6 z 6 zi, (C 1)

ψ̄k(z) = a2e
K2z + b2e

−K2z , zi 6 z 6 H, (C 2)

where

Ki =
Ni

f0

(k2 + µi)
1/2, i = 1, 2. (C 3)

The four coefficients ai and bi are determined by the boundary conditions, yielding

ψ̄k(z) =
hk

∆
K2H0 coshK1z, 0 6 z 6 zi, (C 4)

ψ̄k(z) =
hk

∆
K2H0

[
coshK1zi coshK2(z − zi) +

K1

K2

N2
2

N2
1

sinhK1zi sinhK2(z − zi)
]
,

zi 6 z 6 H, (C 5)

where

∆ =
f2

0

N2
1

K1K2 sinhK1zi coshK2(H0 − zi) +
f2

0

N2
2

K2
2 coshK1zi sinhK2(H0 − zi). (C 6)
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